1
0

dm.tex 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. \documentclass[11pt]{article}
  2. \usepackage{fullpage}
  3. \usepackage[bookmarks,hidelinks]{hyperref}
  4. %% Corrige quelques erreurs de LaTeX2ε
  5. \usepackage{fixltx2e}
  6. \usepackage{xspace}
  7. \usepackage{microtype}
  8. %% Pour ne pas commettre les erreurs fréquentes décrites dans l2tabu
  9. \usepackage[l2tabu,abort]{nag}
  10. %% Saisie en UTF-8
  11. \usepackage[utf8]{inputenc}
  12. %% Fonte : cf. http://www.tug.dk/FontCatalogue/
  13. \usepackage[T1]{fontenc}
  14. \usepackage{lmodern}
  15. \usepackage{csquotes}
  16. %% Pour écrire du français
  17. % \usepackage[frenchb]{babel}
  18. %% Pour composer des mathématiques
  19. \usepackage{mathtools}
  20. \usepackage{amsfonts}
  21. \usepackage{amssymb}
  22. \usepackage{amsthm}
  23. \usepackage{stmaryrd}
  24. \usepackage{semantic}
  25. \newtheorem{lemma}{Lemma}
  26. \newtheorem{definition}{Definition}
  27. %% Commandes du paquet semantic : langage While
  28. \reservestyle{\command}{\textbf}
  29. \command{skip,while,do,if,then,else,not,and,or,true,false,int}
  30. %% -> Utiliser \<begin> Pour styliser le mot-clé
  31. \newcommand{\reduce}{\rightarrow^{*}}
  32. \begin{document}
  33. \author{Timoth\'ee Haudebourg \and Thibaut Marty}
  34. \title{Homework PAS/SDL}
  35. \date{November 18, 2016}
  36. \maketitle
  37. \section{Small-step Semantic}
  38. \subsection{Domains}
  39. The $State$ domain of evaluation is defined as:
  40. \[State = (Var \rightharpoonup Value) \cup \bot\]
  41. Where $Var$ is the set of variables, and $Value$ the set of possible values.
  42. We use $\bot$ to represent the error state.
  43. In our model, a record is represented as a partial application $Field \rightharpoonup Value$.
  44. This means that a record field can contains a record itself.
  45. To do so, we define the set of value as:
  46. \begin{align*}
  47. Value &= \bigcup_{i\in\mathbb{N}} Value_i \\
  48. Value_n &= \mathbb{N} \cup (Field \rightharpoonup Value_{n+1}) \\
  49. \end{align*}
  50. Because the variables are updated by copying, the codomain of the partial application is merely $Value$.
  51. There is no references system.
  52. \subsection{Denotational Semantic for expressions}
  53. We define $\mathcal{A}$ the denotational semantics of arithmetic expressions as:
  54. \[ \mathcal{A}|[ \bullet |] : AExpr \rightarrow State \rightarrow (Value \cup \bot) \]
  55. where
  56. \begin{align*}
  57. \mathcal{A} |[ n |] \sigma &= \mathcal{N} |[n|] \\
  58. \mathcal{A} |[ x |] \sigma &= \sigma x \\
  59. \mathcal{A} |[ e_1\ o\ e_2 |] \sigma &= \mathcal{A} |[ e_1 |] \sigma\ \bar{o}\ \mathcal{A} |[ e_2 |] \sigma, o \in \{+, -, \times\} \\
  60. \mathcal{A} |[ e.f |] \sigma &= \mathcal{A}|[e|] \sigma f\\
  61. \mathcal{A} |[ e_1{f \mapsto e_2} |] \sigma f &= \mathcal{A}|[ e_1 |] \sigma [f \mapsto \mathcal{A}|[ e_2 |] \sigma ]\\
  62. \mathcal{A} |[ \{f_1 = e_1 ; \dots ; f_n = e_n\} |] \sigma f_i &= \mathcal{A}|[ e_i |] \sigma \\
  63. \end{align*}
  64. For the undefined cases, for example when we try to add two records, we also note $\mathcal{A}|[e|] \sigma = \bot$.
  65. In the rest of this homwork, we suppose $\mathcal{B}|[ \bullet |]$ the denotational semantic for booleans expressions already defined.
  66. \subsection{Structural Operational Semantic for commands}
  67. We define $->$ the structural operational semantics for commands as:
  68. \[ ->\ \subseteq (Statement \times State) \times ((Statement \times State) \cup State) \]
  69. \subsubsection{Regular execution}
  70. For all $\sigma \neq \bot$:
  71. \[
  72. \inference{}{(\<skip>, \sigma) -> \sigma}
  73. \]
  74. \[
  75. \inference{}{(x := a, \sigma) -> \sigma[x \mapsto \mathcal{A}|[a|] \sigma]}{\text{if }\mathcal{A}|[a|] \sigma \neq \bot}
  76. \]
  77. \[
  78. \inference{(S_1, \sigma) -> (S_1', \sigma')}{(S_1 ; S_2, \sigma) -> (S_1' ; S_2, \sigma')}
  79. \]
  80. \[
  81. \inference{(S_1, \sigma) -> \sigma'}{(S_1 ; S_2, \sigma) -> (S_2, \sigma')}
  82. \]
  83. \[
  84. \inference{}{(\<while>\ b\ \<do>\ S, \sigma) -> (S ; \<while>\ b\ \<do>\ S, \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{tt}}
  85. \]
  86. \[
  87. \inference{}{(\<while>\ b\ \<do>\ S, \sigma) -> \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{ff}}
  88. \]
  89. \[
  90. \inference{}{(\<if>\ b\ \<then>\ S_1\ \<else>\ S_2, \sigma) -> (S_1, \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{tt}}
  91. \]
  92. \[
  93. \inference{}{(\<if>\ b\ \<then>\ S_1\ \<else>\ S_2, \sigma) -> (S_2, \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{ff}}
  94. \]
  95. \subsubsection{Error handling}
  96. An error can occurs when one tries to add (or compare) records.
  97. In that case, according to our definition of arithmetic expressions, $\mathcal{A}|[e|] \sigma$ (or $\mathcal{B}|[b|]$) will returns $\bot$.
  98. From this point, the execution of the program makes no sense, and we will return the error state.
  99. \[
  100. \inference{}{(x := a, \sigma) -> \bot}{\text{if }\mathcal{A}|[a|] \sigma = \bot}
  101. \]
  102. \[
  103. \inference{}{(\<while>\ b\ \<do>\ S, \sigma) -> \bot}{\text{if } \mathcal{B}|[b|] \sigma = \bot}
  104. \]
  105. \[
  106. \inference{}{(\<if>\ b\ \<then>\ S_1\ \<else>\ S_2, \sigma) -> \bot}{\text{if } \mathcal{B}|[b|] \sigma = \bot}
  107. \]
  108. To ensure that the error can make it through the end, we also add the error propagation rule:
  109. \[
  110. \inference{}{(S, \bot) -> \bot}
  111. \]
  112. Finally, note that according to the exercise statement, we suppose that all variables are already defined in $\sigma$,
  113. so that no error can occur because of an undefined variable.
  114. \section{Type system}
  115. We suppose now that every variable in the program is declared with a type satisfying the following syntax:
  116. \[
  117. t\quad::=\quad\text{int }|\ \{f_1 : t_1;\ \dots\ ; f_n : t_n\}
  118. \]
  119. \subsection{Definition}
  120. We note $\Gamma \vdash S$ the type judgment for our language, defined by the following typing rules:
  121. \[
  122. \inference{}{\Gamma \vdash n : int}
  123. \]
  124. \[
  125. \inference{(x : T) \in \Gamma}{\Gamma \vdash x : T}
  126. \]
  127. \[
  128. \inference{\Gamma \vdash a_1 : int & \Gamma \vdash a_2 : int}{\Gamma \vdash a_1\ o\ a_2 : int}{o \in \{+, -, \times\}}
  129. \]
  130. Records
  131. \[
  132. \inference{\Gamma \vdash e_1 : T_1 & \dots & \Gamma \vdash e_n : T_n}{\Gamma \vdash \{f_1 = e_1 ; \dots ; f_n = e_n\} : \{f_1 : T_1 ; \dots; f_n : T_n\}}
  133. \]
  134. Field assignment
  135. \[
  136. \inference[append ]{\Gamma \vdash e_2 : T & \Gamma \vdash e_1 : \{f_1 : T_1; \dots; f_n : T_n\}}{\Gamma \vdash e_1[f \mapsto e_2] : \{f : T; f_1 : T_1; \dots; f_n : T_n\}}
  137. \]
  138. \[
  139. \inference[override ]{\Gamma \vdash e_2 : T & \Gamma \vdash e_1 : \{f_1 : T_1; \dots; f_i : T_i; \dots; f_n : T_n\}}{\Gamma \vdash e_1[f_i \mapsto e_2] : \{f_1 : T_1; \dots; f_i : T; \dots; f_n : T_n\}}
  140. \]
  141. Field lookup
  142. \[
  143. \inference{\Gamma \vdash e : \{f : T\}}{\Gamma \vdash e.f : T}
  144. \]
  145. As is, the last rule can seems too restrictive.
  146. Indeed, an expression $e$ does not have to match \emph{exactly} the type $\{f : T\}$ to provide the field $f$.
  147. It can contains some other fields.
  148. We want the type $\{f : T\}$ to express \enquote{any record with a field $f$ of type $T$}.
  149. To do this, we introduce the following sub-typing relation:
  150. \[
  151. \inference{}{\{f_1 : T_1; \dots ; f_n : T_n; g_1 : S_1; \dots ; g_k : S_k\} <: \{f_1 : T_1; \dots ; f_n : T_n\}}
  152. \]
  153. % FIXME on avait noté la relation <: dans l'autre sens
  154. Note that in order to assure the reflexivity of our relation,
  155. a type $S$ is a sub-type of $T$ if all the fields of $T$ are included in $S$.
  156. We also introduce a new subsumption typing rule:
  157. \[
  158. \inference{\Gamma \vdash e : S & S <: T}{\Gamma \vdash e : T}
  159. \]
  160. Assignment
  161. \[
  162. \inference{\Gamma \vdash x : T & \Gamma \vdash a : T}{\Gamma \vdash x := a}
  163. \]
  164. Sequence
  165. \[
  166. \inference{\Gamma \vdash S_1 & \Gamma \vdash S_2}{\Gamma \vdash (S_1 ; S_2)}
  167. \]
  168. While loop
  169. \[
  170. \inference{\Gamma \vdash b & \Gamma \vdash S}{\Gamma \vdash \<while>\ b\ \<do>\ S}
  171. \]
  172. Condition
  173. \[
  174. \inference{\Gamma \vdash b & \Gamma \vdash S_1 & \Gamma \vdash S_2}{\Gamma \vdash \<if>\ b\ \<then>\ S_1\ \<else>\ S_2}
  175. \]
  176. As the booleans expressions can contain expressions which can contain variables, they are not necessarily well typed. Hence we need to define typing rules on booleans:
  177. \[
  178. \inference{}{\Gamma \vdash \<true>}
  179. \]
  180. \[
  181. \inference{}{\Gamma \vdash \<false>}
  182. \]
  183. \[
  184. \inference{\Gamma \vdash b}{\Gamma \vdash \<not>\ b}
  185. \]
  186. \[
  187. \inference{\Gamma \vdash b_1 & \Gamma \vdash b_2}{\Gamma \vdash b_1\ o\ b_2}{o \in \{\<and>, \<or>\}}
  188. \]
  189. \[
  190. \inference{\Gamma \vdash a_1 : int & \Gamma \vdash a_2 : int}{\Gamma \vdash a_1 \le a_2}
  191. \]
  192. \[
  193. \inference{\Gamma \vdash a_1 : T & \Gamma \vdash a_2 : T}{\Gamma \vdash a_1 = a_2}
  194. \]
  195. Note: for the equality test, the rule works for \<int> as well as for records.
  196. % Domains
  197. \[
  198. n \in Num
  199. \]
  200. \[
  201. x \in Var
  202. \]
  203. \[
  204. e,e_1,e_2,a,a_1,a_2 \in AExpr
  205. \]
  206. \[
  207. b,b_1,b_2 \in BExpr
  208. \]
  209. \[
  210. f,f_1,\dots,f_n,f_i,g_1,\dots,g_k, \in Field % Field n'est pas défini…
  211. \]
  212. \[
  213. S,S_1,S_2 \in Statement
  214. \]
  215. \subsection{Correctness}
  216. \begin{definition}[Well typed value]
  217. A value $v \in Value$ is well typed regarding to a type $T$ (noted $v |- T$) when :
  218. \begin{align*}
  219. v |- int &=> v \in \mathbb{N} \\
  220. v |- \{f_1 : T_1, \dots, f_n : T_n\} &=> v \in Field \rightharpoonup Value\text{ and }\forall f_i, f_i \in dom(v) \land v(t_i) |- T_i
  221. \end{align*}
  222. \end{definition}
  223. \begin{definition}[Well typed state]
  224. A state $\sigma \in State$, $\sigma \neq \bot$ is well typed with regards to a type system $\Gamma$ (noted $\sigma |- \Gamma$) when
  225. \[\forall x \in Var,\ \Gamma |- x : T => x |- T\]
  226. \end{definition}
  227. \begin{lemma}[Well typed expressions cannot go wrong]
  228. $\forall e \in AExpr, \sigma \in State, \Gamma$ such as $\sigma |- \Gamma$ :
  229. \[\Gamma |- e : T => \mathcal{A}|[e|] \sigma |- T\]
  230. In particular, $\mathcal{A}|[e|] \neq \bot$.
  231. \end{lemma}
  232. \begin{proof}
  233. We demonstrate this property by induction on the structure of the expression $e$.
  234. First let assume that $\Gamma |- e : T$.
  235. We can eliminates all trivial cases in contradiction with this assumption (for example when $e = 1 + 1$ and $T = \{\}$).
  236. Here are the other base cases:
  237. \begin{itemize}
  238. \item $e = n, T = int$.
  239. $\mathcal{A}|[e|] = \mathcal{N}|[n|]$.
  240. $\mathcal{N}|[n|] \in \mathbb{N}$ so we have $\mathcal{A}|[e|] \in \mathbb{N}$ which means that $\mathcal{A}|[e|] \sigma |- T$.
  241. \item $e = n, T = int$.
  242. \item $e = x$.
  243. \item $e = e_1 o e_2, T = int$.
  244. \item $e = e_1.f$.
  245. \item $e = e_1[f \mapsto e_2]$.
  246. \item $e = \{f_1 = e_1; \dots; f_n = e_n\}$.
  247. \end{itemize}
  248. \end{proof}
  249. \begin{lemma}[Well typed programs cannot go wrong]
  250. \[\forall \Gamma P,\quad \Gamma \vdash P \; => \;\forall \sigma,\; (P, \sigma) \not\reduce \bot\]
  251. \end{lemma}
  252. \begin{proof}
  253. By induction on the path of $\reduce$, and by induction on the structure/type of the statement at each step of the path.
  254. \end{proof}
  255. \section{Static analysis}
  256. We propose a constraint based static analysis to determine at each instruction which field is defined in each variables.
  257. Our static analysis is incarnated by the function $RF$ (\enquote{Reachable Fields}).
  258. \[RF : Lab -> Var -> \mathcal{P}(Field)\]
  259. where $Lab$ is the set of labels.
  260. One unique label is assigned to each instruction.
  261. For the sake of simplicity, we note $[I]^l$ the instruction of label $l$.
  262. We also define an $init$ function returning the first label of a statement where:
  263. \begin{align*}
  264. &init([\<skip>]^l) = l\\
  265. &init([x := a]^l) = l\\
  266. &init(S_1;S_2) = init(S_1)\\
  267. &init(\<while>\ [b]^l\ \<do>\ S) = l \\
  268. &init(\<if>\ [b]^l\ \<then>\ S_1\ \<else>\ S_2) = l
  269. \end{align*}
  270. \subsection{Definition}
  271. \[
  272. \inference{RF(l) \subseteq RF (init(S)) & RF \vdash (S, l) & RF(l) \subseteq RF(l')}{RF \vdash (\<while>\ [b]^l\ \<do>\ S, l')}
  273. \]
  274. \[
  275. \inference{RF(l) \subseteq RF(init(S_1)) & RF \vdash (S_1, l') \\ RF(l) \subseteq RF(init(S_2)) & RF \vdash (S_2, l')}{RF \vdash (\<if>\ [b]^l\ \<then>\ S_1\ \<else>\ S_2, l')}
  276. \]
  277. \[
  278. \inference{RF(l) \subseteq RF(l')}{RF \vdash ([skip]^l, l')}
  279. \]
  280. \[
  281. \inference{RF \vdash (S_1, init(S_2)) & RF \vdash (S_2, l')}{RF \vdash (S_1 ; S_2, l')}
  282. \]
  283. \[
  284. \inference{RF(l)[x \mapsto \{f_1, \dots, f_n\}] \subseteq RF(l')}{RF \vdash ([x := \{f_1 = e_1 ; \dots ; f_n = e_n\}]^l, l')}
  285. \]
  286. \[
  287. % TODO : il faudrait évaluer statiquement e_1 pour être moins pessimiste
  288. \inference{RF(l)[x \mapsto \{f\}] \subseteq RF(l')}{RF \vdash ([x := e_1[f \mapsto e_2]]^l, l')}
  289. \]
  290. % autres affectations
  291. \[
  292. \inference{RF(l)[x \mapsto \emptyset] \subseteq RF(l')}{RF \vdash ([x := n]^l, l')}
  293. \]
  294. \[
  295. \inference{RF(l)[x \mapsto RF(l)(y)] \subseteq RF(l')}{RF \vdash ([x := y]^l, l')}
  296. \]
  297. \[
  298. \inference{RF(l)[x \mapsto \emptyset] \subseteq RF(l')}{RF \vdash ([x := e_1\ o\ e_2]^l, l')}
  299. \]
  300. \[
  301. \inference{RF(l)[x \mapsto \emptyset] \subseteq RF(l')}{RF \vdash ([x := e.f]^l, l')}
  302. \]
  303. \subsection{Example}
  304. Example.
  305. \subsection{Termination}
  306. In each premise of each rule, the size of the statement is \emph{strictly} decreasing,
  307. assuring the termination of the analysis.
  308. \subsection{Safety}
  309. This is a pessimistic static analysis.
  310. \end{document}