dm.tex 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. \documentclass[11pt]{article}
  2. \usepackage{fullpage}
  3. \usepackage[bookmarks,hidelinks]{hyperref}
  4. %% Corrige quelques erreurs de LaTeX2ε
  5. \usepackage{fixltx2e}
  6. \usepackage{xspace}
  7. \usepackage{microtype}
  8. %% Pour ne pas commettre les erreurs fréquentes décrites dans l2tabu
  9. \usepackage[l2tabu,abort]{nag}
  10. %% Saisie en UTF-8
  11. \usepackage[utf8]{inputenc}
  12. %% Fonte : cf. http://www.tug.dk/FontCatalogue/
  13. \usepackage[T1]{fontenc}
  14. \usepackage{lmodern}
  15. \usepackage{csquotes}
  16. %% Pour écrire du français
  17. % \usepackage[frenchb]{babel}
  18. %% Pour composer des mathématiques
  19. \usepackage{mathtools}
  20. \usepackage{amsfonts}
  21. \usepackage{amssymb}
  22. \usepackage{amsthm}
  23. \usepackage{stmaryrd}
  24. \usepackage{semantic}
  25. %% Commandes du paquet semantic : langage While
  26. \reservestyle{\command}{\textbf}
  27. \command{skip,while,do,if,then,else,not,and,or,true,false,int}
  28. %% -> Utiliser \<begin> Pour styliser le mot-clé
  29. \newcommand{\reduce}{\rightarrow^{*}}
  30. \begin{document}
  31. \author{Timoth\'ee Haudebourg \and Thibaut Marty}
  32. \title{Homework PAS/SDL}
  33. \date{November 18, 2016}
  34. \maketitle
  35. \section{Small-step Semantic}
  36. \subsection{Domains}
  37. The $State$ domain of evaluation is defined as:
  38. \[State = (Var \rightharpoonup Value) \cup \bot\]
  39. Where $Var$ is the set of variables, and $Value$ the set of possible values.
  40. We use $\bot$ to represent the error state.
  41. In our model, a record is represented as a partial application $Field \rightharpoonup Value$.
  42. This means that a record field can contains a record itself.
  43. To do so, we define the set of value as:
  44. \begin{align*}
  45. Value &= \bigcup_{i\in\mathbb{N}} Value_i \\
  46. Value_n &= \mathbb{N} \cup (Field \rightharpoonup Value_{n+1}) \\
  47. \end{align*}
  48. Because the variables are updated by copying, the codomain of the partial application is merely $Value$.
  49. There is no references system.
  50. \subsection{Denotational Semantic for expressions}
  51. We define $\mathcal{A}$ the denotational semantics of arithmetic expressions as:
  52. \[ \mathcal{A}|[ \bullet |] : AExpr \rightarrow State \rightarrow (Value \cup \bot) \]
  53. where
  54. \begin{align*}
  55. \mathcal{A} |[ n |] \sigma &= \mathcal{N} |[n|] \\
  56. \mathcal{A} |[ x |] \sigma &= \sigma x \\
  57. \mathcal{A} |[ e_1\ o\ e_2 |] \sigma &= \mathcal{A} |[ e_1 |] \sigma\ \bar{o}\ \mathcal{A} |[ e_2 |] \sigma, o \in \{+, -, \times\} \\
  58. \mathcal{A} |[ e.f |] \sigma &= \mathcal{A}|[e|] \sigma f\\
  59. \mathcal{A} |[ e_1{f \mapsto e_2} |] \sigma f &= \mathcal{A}|[ e_1 |] \sigma [f \mapsto \mathcal{A}|[ e_2 |] \sigma ]\\
  60. \mathcal{A} |[ \{f_1 = e_1 ; \dots ; f_n = e_n\} |] \sigma f_i &= \mathcal{A}|[ e_i |] \sigma \\
  61. \end{align*}
  62. For the undefined cases, for example when we try to add two records, we also note $\mathcal{A}|[e|] \sigma = \bot$.
  63. In the rest of this homwork, we suppose $\mathcal{B}|[ \bullet |]$ the denotational semantic for booleans expressions already defined.
  64. \subsection{Structural Operational Semantic for commands}
  65. We define $->$ the structural operational semantics for commands as:
  66. \[ -> : (Statement \times State) \times ((Statement \times State) \cup State) \]
  67. \subsubsection{Regular execution}
  68. For all $\sigma \neq \bot$:
  69. \[
  70. \inference{}{(\<skip>, \sigma) -> \sigma}
  71. \]
  72. \[
  73. \inference{}{(x := a, \sigma) -> \sigma[x \mapsto \mathcal{A}|[a|] \sigma]}{\text{if }\mathcal{A}|[a|] \sigma \neq \bot}
  74. \]
  75. \[
  76. \inference{(S_1, \sigma) -> (S_1', \sigma')}{(S_1 ; S_2, \sigma) -> (S_1' ; S_2, \sigma')}
  77. \]
  78. \[
  79. \inference{(S_1, \sigma) -> \sigma'}{(S_1 ; S_2, \sigma) -> (S_2, \sigma')}
  80. \]
  81. \[
  82. \inference{}{(\<while>\ b\ \<do>\ S, \sigma) -> (S ; \<while>\ b\ \<do>\ S, \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{tt}}
  83. \]
  84. \[
  85. \inference{}{(\<while>\ b\ \<do>\ S, \sigma) -> \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{ff}}
  86. \]
  87. \[
  88. \inference{}{(\<if>\ b\ \<then>\ S_1\ \<else>\ S_2, \sigma) -> (S_1, \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{tt}}
  89. \]
  90. \[
  91. \inference{}{(\<if>\ b\ \<then>\ S_1\ \<else>\ S_2, \sigma) -> (S_2, \sigma)}{\text{if } \mathcal{B}|[b|] \sigma = \text{ff}}
  92. \]
  93. \subsubsection{Error handling}
  94. An error can occurs when one tries to add (or compare) records.
  95. In that case, according to our definition of arithmetic expressions, $\mathcal{A}|[e|] \sigma$ (or $\mathcal{B}|[b|]$) will returns $\bot$.
  96. From this point, the execution of the program makes no sense, and we will return the error state.
  97. \[
  98. \inference{}{(x := a, \sigma) -> \bot}{\text{if }\mathcal{A}|[a|] \sigma = \bot}
  99. \]
  100. \[
  101. \inference{}{(\<while>\ b\ \<do>\ S, \sigma) -> \bot}{\text{if } \mathcal{B}|[b|] \sigma = \bot}
  102. \]
  103. \[
  104. \inference{}{(\<if>\ b\ \<then>\ S_1\ \<else>\ S_2, \sigma) -> \bot}{\text{if } \mathcal{B}|[b|] \sigma = \bot}
  105. \]
  106. To ensure that the error can make it through the end, we also add the error propagation rule:
  107. \[
  108. \inference{}{(S, \bot) -> \bot}
  109. \]
  110. Finally, note that according to the exercise statement, we suppose that all variables are already defined in $\sigma$,
  111. so that no error can occur because of an undefined variable.
  112. \section{Type system}
  113. We suppose now that every variable in the program is declared with a type satisfying the following syntax:
  114. \[
  115. t\quad::=\quad\text{int }|\ \{f_1 : t_1;\ \dots\ ; f_n : t_n\}
  116. \]
  117. \subsection{Definition}
  118. We note $\Gamma \vdash S$ the type judgment for our language, defined by the following typing rules:
  119. \[
  120. \inference{}{\Gamma \vdash n : int}
  121. \]
  122. \[
  123. \inference{(x : T) \in \Gamma}{\Gamma \vdash x : T}
  124. \]
  125. \[
  126. \inference{\Gamma \vdash a_1 : int & \Gamma \vdash a_2 : int}{\Gamma \vdash a_1\ o\ a_2 : int}{o \in \{+, -, \times\}}
  127. \]
  128. Records
  129. \[
  130. \inference{\Gamma \vdash e_1 : T_1 & \dots & \Gamma \vdash e_n : T_n}{\Gamma \vdash \{f_1 = e_1 ; \dots ; f_n = e_n\} : \{f_1 : T_1 ; \dots; f_n : T_n\}}
  131. \]
  132. Field assignment
  133. \[
  134. \inference[append ]{\Gamma \vdash e_2 : T & \Gamma \vdash e_1 : \{f_1 : T_1; \dots; f_n : T_n\}}{\Gamma \vdash e_1[f \mapsto e_2] : \{f : T; f_1 : T_1; \dots; f_n : T_n\}}
  135. \]
  136. \[
  137. \inference[override ]{\Gamma \vdash e_2 : T & \Gamma \vdash e_1 : \{f_1 : T_1; \dots; f_i : T_i; \dots; f_n : T_n\}}{\Gamma \vdash e_1[f_i \mapsto e_2] : \{f_1 : T_1; \dots; f_i : T; \dots; f_n : T_n\}}
  138. \]
  139. Field lookup
  140. \[
  141. \inference{\Gamma \vdash e : \{f : T\}}{\Gamma \vdash e.f : T}
  142. \]
  143. As is, the last rule can seems too restrictive.
  144. Indeed, an expression $e$ does not have to match \emph{exactly} the type $\{f : T\}$ to provide the field $f$.
  145. It can contains some other fields.
  146. We want the type $\{f : T\}$ to express \enquote{any record with a field $f$ of type $T$}.
  147. To do this, we introduce the following sub-typing relation:
  148. \[
  149. \inference{}{\{f_1 : T_1; \dots ; f_n : T_n; g_1 : S_1; \dots ; g_k : S_k\} <: \{f_1 : T_1; \dots ; f_n : T_n\}}
  150. \]
  151. % FIXME on avait noté la relation <: dans l'autre sens
  152. Note that in order to assure the reflexivity of our relation,
  153. a type $S$ is a sub-type of $T$ if all the fields of $T$ are included in $S$.
  154. We also introduce a new subsumption typing rule:
  155. \[
  156. \inference{\Gamma \vdash e : S & S <: T}{\Gamma \vdash e : T}
  157. \]
  158. Assignment
  159. \[
  160. \inference{\Gamma \vdash x : T & \Gamma \vdash a : T}{\Gamma \vdash x := a}
  161. \]
  162. Sequence
  163. \[
  164. \inference{\Gamma \vdash S_1 & \Gamma \vdash S_2}{\Gamma \vdash (S_1 ; S_2)}
  165. \]
  166. While loop
  167. \[
  168. \inference{\Gamma \vdash b & \Gamma \vdash S}{\Gamma \vdash \<while>\ b\ \<do>\ S}
  169. \]
  170. Condition
  171. \[
  172. \inference{\Gamma \vdash b & \Gamma \vdash S_1 & \Gamma \vdash S_2}{\Gamma \vdash \<if>\ b\ \<then>\ S_1\ \<else>\ S_2}
  173. \]
  174. Booleans
  175. \[
  176. \inference{}{\Gamma \vdash \<true>}
  177. \]
  178. \[
  179. \inference{}{\Gamma \vdash \<false>}
  180. \]
  181. \[
  182. \inference{\Gamma \vdash b}{\Gamma \vdash \<not>\ b}
  183. \]
  184. \[
  185. \inference{\Gamma \vdash b_1 & \Gamma \vdash b_2}{\Gamma \vdash b_1\ o\ b_2}{o \in \{\<and>, \<or>\}}
  186. \]
  187. \[
  188. \inference{\Gamma \vdash a_1 : int & \Gamma \vdash a_2 : int}{\Gamma \vdash a_1 \le a_2}
  189. \]
  190. \[
  191. \inference{\Gamma \vdash a_1 : T & \Gamma \vdash a_2 : T}{\Gamma \vdash a_1 = a_2}
  192. \]
  193. Note: for the equality test, the rule works for \<int> as well as for records.
  194. % Domains
  195. \[
  196. n \in Num
  197. \]
  198. \[
  199. x \in Var
  200. \]
  201. \[
  202. e,e_1,e_2,a,a_1,a_2 \in AExpr
  203. \]
  204. \[
  205. b,b_1,b_2 \in BExpr
  206. \]
  207. \[
  208. f,f_1,\dots,f_n,f_i,g_1,\dots,g_k, \in Field % Field n'est pas défini…
  209. \]
  210. \[
  211. S,S_1,S_2 \in Statement
  212. \]
  213. \subsection{Correctness}
  214. \[\forall \Gamma P,\quad \Gamma \vdash P \; => \;\forall \sigma,\; (P, \sigma) \not\reduce \bot\]
  215. \begin{proof}
  216. By induction on the path of $\reduce$, and by induction on the structure/type of the statement at each step of the path.
  217. \end{proof}
  218. \section{Static analysis}
  219. We propose a constraint based static analysis to determine at each instruction which field is defined in each variables.
  220. Our static analysis is incarnated by the function $RF$ (\enquote{Reachable Fileds}).
  221. \[RF : Lab -> Var -> \mathcal{P}(Field)\]
  222. where $Lab$ is the set of labels.
  223. One unique label is assigned to each instruction.
  224. For the sake of simplicity, we note $[I]^l$ the instruction of label $l$.
  225. We also define an $init$ function returning the first label of a statement where:
  226. \begin{align*}
  227. &init([\<skip>]^l) = l\\
  228. &init([x := a]^l) = l\\
  229. &init(S_1;S_2) = init(S_1)\\
  230. &init(\<while>\ [b]^l\ \<do>\ S) = l \\
  231. &init(\<if>\ [b]^l\ \<then>\ S_1\ \<else>\ S_2) = l
  232. \end{align*}
  233. \subsection{Definition}
  234. \[
  235. \inference{RF(l) \subseteq RF (init(S)) & RF \vdash (S, l) & RF(l) \subseteq RF(l')}{RF \vdash (\<while>\ [b]^l\ \<do>\ S, l')}
  236. \]
  237. \[
  238. \inference{RF(l) \subseteq RF(init(S_1)) & RF \vdash (S_1, l') \\ RF(l) \subseteq RF(init(S_2)) & RF \vdash (S_2, l')}{RF \vdash (\<if>\ [b]^l\ \<then>\ S_1\ \<else>\ S_2, l')}
  239. \]
  240. \[
  241. \inference{RF(l) \subseteq RF(l')}{RF \vdash ([skip]^l, l')}
  242. \]
  243. \[
  244. \inference{RF \vdash (S_1, init(S_2)) & RF \vdash (S_2, l')}{RF \vdash (S_1 ; S_2, l')}
  245. \]
  246. \[
  247. \inference{RF(l)[x \mapsto \{f_1, \dots, f_n\}] \subseteq RF(l')}{RF \vdash ([x := \{f_1 = e_1 ; \dots ; f_n = e_n\}]^l, l')}
  248. \]
  249. \[
  250. % TODO : il faudrait évaluer statiquement e_1 pour être moins pessimiste
  251. \inference{RF(l)[x \mapsto \{f\}] \subseteq RF(l')}{RF \vdash ([x := e_1[f \mapsto e_2]]^l, l')}
  252. \]
  253. % autres affectations
  254. \[
  255. \inference{RF(l)[x \mapsto \emptyset] \subseteq RF(l')}{RF \vdash ([x := n]^l, l')}
  256. \]
  257. \[
  258. \inference{RF(l)[x \mapsto RF(l)(y)] \subseteq RF(l')}{RF \vdash ([x := y]^l, l')}
  259. \]
  260. \[
  261. \inference{RF(l)[x \mapsto \emptyset] \subseteq RF(l')}{RF \vdash ([x := e_1\ o\ e_2]^l, l')}
  262. \]
  263. \[
  264. \inference{RF(l)[x \mapsto \emptyset] \subseteq RF(l')}{RF \vdash ([x := e.f]^l, l')}
  265. \]
  266. \subsection{Example}
  267. Example.
  268. \subsection{Termination}
  269. In each premise of each rule, the size of the statement is \emph{strictly} decreasing,
  270. assuring the termination of the analysis.
  271. \subsection{Safety}
  272. This is a pessimistic static analysis.
  273. \end{document}