main.tex 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. % ------------------------------------------------------------------------
  2. \documentclass{llncs}
  3. \input{prelude}
  4. \begin{document}
  5. \title{Star Discrepancies for generalized Halton points}
  6. % \titlerunning{} % abbreviated title (for running head)
  7. % also used for the TOC unless
  8. % \toctitle is used
  9. \author{Thomas Espitau\inst{1} \and Olivier Marty\inst{1}}
  10. %
  11. % \authorrunning{} % abbreviated author list (for running head)
  12. %
  13. %%%% list of authors for the TOC (use if author list has to be modified)
  14. % \tocauthor{}
  15. %
  16. \institute{
  17. $\mbox{}^1$ ENS Cachan \qquad
  18. }
  19. \maketitle
  20. \makeatletter
  21. \makeatother
  22. \begin{abstract}
  23. \end{abstract}
  24. \section{Introduction}
  25. \section{General architecture of the toolset}
  26. Big pipeline + pool + blabla\medskip
  27. Un truc bien ca serait d'avoir un truc modulaire (genre les heuristiques
  28. sont des "blocs" et l'outil appelle un bloc quand il veut faire son test
  29. en l'appelant en multicore"
  30. (c'est stupide mais ca fera un beau schéma!)
  31. \section{Heuristics devlopped}
  32. \subsection{Fully random search (Test case)}
  33. Blabla+pipeline
  34. \subsection{The Knuth-Fisher-Yates shuffle}
  35. The Fisher–Yates shuffle is an algorithm for generating a random permutation
  36. of a finite sets. The Fisher–Yates shuffle is unbiased, so that every
  37. permutation is equally likely. We present here the Durstenfeld variant of
  38. the algorithm, presented by Knuth in \emph{The Art of Computrer programming}.
  39. The algorithm's time complexity is here $O(n)$, compared to $O(n^2)$ of
  40. the naive implementation.
  41. \begin{algorithm}[H]
  42. \SetAlgoLined
  43. \SetKwFunction{Rand}{Rand}
  44. \SetKwFunction{Swap}{Swap}
  45. \KwData{A table T[1..n]}
  46. \KwResult{Same table T, shuffled}
  47. \For{$i\leftarrow 1$ \KwTo $n-1$}{
  48. $j \leftarrow$ \Rand{$[1,n-i]$}\;
  49. \Swap{$T[i], T[i+j]$}\;
  50. }
  51. \caption{KFY algorithm}
  52. \end{algorithm}
  53. \begin{lemma}
  54. The resulting permutation of KFY is unbiaised.
  55. \end{lemma}
  56. \begin{proof}
  57. Let consider the set $[1,\ldots n]$ as the vertices of a random graph
  58. constructed as the trace of the execution of the algorithm:
  59. an edge $(i,j)$ exists in the graph if and only if the swap of $T[i]$ and
  60. $T[j]$ had been executed. This graph encodes the permutation represented by
  61. $T$. To be able to encode any permutation the considered graph must be connex
  62. --- in order to allow any pairs of points to be swapped ---.
  63. Since by construction every points is reached by an edge, and that there
  64. exists exactly $n-1$ edges, we can conclude directly that any permutation can
  65. be reached by the algorithm. Since the probability of getting a fixed graph
  66. of $n-1$ edges with every edges of degree at least one is $n!^{-1}$, the
  67. algorithm is thus unbiaised.
  68. \end{proof}
  69. \subsection{Local Search}
  70. Blabla+Pipeline
  71. \subsection{Evolutionary heuristics}
  72. Blabla+Pipeline
  73. \subsection{Genetic heuristics}
  74. Blabla+Pipeline
  75. \section{Results}
  76. \section{Conclusion}
  77. \end{document}