Star discrepancies for generalized Halton points sets - ○ ○

T. Espitau \& O. Marty | 2016

Languages used

- C
| Discrepancy calculation
- C++ | Unit simulations

Overview

Heuristics implemented

- Fully random search
- Simulated annealing for local rand search
- $(\mu+\lambda)$ Genetic search

Random Search

Overview

- Simplest search: regenerate the whole permutation at each iteration.
- The prime based is fixed
$\{7,13,29,3\}$
- Invariant pi $[0]=0$ maintained + KFY shuffle called on $\mathrm{pi}[1, \ldots, \mathrm{n}]$.

Knuth-Fisher-Yates Shuffle

```
1. -- To shuffle an array a of n elements
A[0. .n-1];
for i from n-1 downto 1 do
    j random integer in [0,...,i];
    swap( A[j] , A[i] );
6. done
```


Random Search | Stability (D=2)

Random Search | Stability (D=3)

Random Search Results

Number of iterations > 1000 doesn't give much better results

Simulated Annealing

What's that?

- Interprets slow cooling as a slow decrease in the probability of accepting worse solutions
- Accepting worse solutions is a fundamental property to avoid local minima.

Pseudo-Code

```
S}\leftarrow\mp@subsup{S}{0}{
2. For }k=0\mathrm{ to }\mp@subsup{k}{\mathrm{ max }}{}\mathrm{ do
3. }\mp@subsup{\textrm{S}}{\mathrm{ new }}{}\leftarrow\mathrm{ neighbour(s);
4. If e
                S}\leftarrow\mp@subsup{\textrm{S}}{\mathrm{ new }}{}
                T}\leftarrow\textrm{T}*\lambda;// \lambda=0.99
        done
        return s;
```

5.
6.
7. done
8. return s ;

Dependance on initial temperature

Sim. Annealing Results

Sim Annealing | Temperature (D=3)

Sim Annealing | Stability (D=2)

> Lowest temperature gives best results (saturates if <0.001)

Sim. Annealing Results

Number of iterations > 1000 doesn't give much better results

Smaller error bands.

$(\mu+\lambda)$ Genetic Search

Overview

- $(5,5)$ search implemented.
- Keep common values.
- Close to A or B.

Crossover algorithm

- Don't modify more the end of the permutation than its start.

```
A[0..n-1]; B[0..n-1];
pi \leftarrowKFY shuffle [1..n];
availables \leftarrow \varnothing;
for i from 1 downto n do
    if A[pi[i]] and B[pi[i]] already chosen then
        C[pi[i]]}\leftarrowR\mathrm{ Random in availables;
    elif A[pi[i]] already chosen then
        C[i] & B[pi[i]];
    elif B[pi[i]] already chosen then
        C[i]}\leftarrow\textrm{A}[\textrm{pi}[\textrm{i}]]
    else
        swap A and B w.p. 1/2
        C[i]}\leftarrow\textrm{A}[\textrm{pi[i]}]
        available \leftarrow available U {B[pi[i]]};
    done
    availables }\leftarrow\mathrm{ availables \{C[pi[i]]}
done
```


Genetic Search Ip dependence (D=2)

Genetic Search $\mid \mathrm{p}$ dependence (D=2)

Genetic Search Ip dependence (D=3)

Genetic Search Ip depedence (D=4)

> Best results on average for $$
c=0.5 / 0.6
$$

Genetic Search Results

Number of iterations >1000 doesn't give much better results

Big errors bands on
low number of points.

Wrap up all heuristics (D=2)

Wrap up all heuristics (D=2)

Wrap up all heuristics (D=3)

Wrap up all heuristics (D=4)

"Intelligent" heuristics are better than fully random search

Wrap up

Genetic or S.A. is better depending on the dimension.

