
I Discrepancies for generalized Halton points
Comparison of three heuristics for generating

points set

Thomas Espitau^ and Olivier Marty^

^ ENS Cachan

Abstract. Geometric discrepancies are standard measures to quantify
the irregularity of distributions. They are an important notion in nu-
merical integration. One of the most important discrepancy notions is
the so-called star discrepancy. Roughly speaking, a point set of low star
discrepancy value allows for a small approximation error in quasi-Monte
Carlo integration. In this work we present a tool realizing the implemen-
tation of three basics heuristics for the construction of low discrepancy
points sets in the generalized Halton model: fully random search, local
search with simulated annealing and genetic (5 + 5) search with a ad-hoc
crossover function.

1 General architecture of the tool

The testing tool is aimed to be modular: it is made of independents blocks that
are interfaced trough a scheduler. More precisely a master wrapper is written in
Python that calls a first layer which performs the chosen heuristic. This layer is
written in C++ for performances. The given discrepancy algorithm — written in
C — is called when evaluations of a state is needed. The wrapper dispatch the
computations on the multi-core architecture of modern computers1. This basic
architecture is described in figure 1. More precisely the class diagram for the
unitary test layer is presented in figure 2. Experiments were conducted on two
machines:

– 2.4 GHz Intel Dual Core i5 hyper-threaded to 2.8GHz, 8 Go 1600 MHz DDR3.
– 2.7 GHz Intel Quad Core i7 4800MQ hyper-threaded to 3.7GHz, 16 Go 1600

MHz DDR3.

On these machines, some basic profiling has made clear that the main bot-
tleneck of the computations is hiding in the computation of the discrepancy.
The chosen algorithm and implantation of this cost function is the DEM-
algorithm [DEM96] of Magnus Wahlstrøm [Wah].

All the experiments has been conducted on dimension 2,3, and 4 — with a
fixed Halton prime basis 7, 13, 29, and 3. Some minor tests have been made in
1 for us, between 2 and 4 physical cores and 4 or 8 virtual cores

Random search Sim. Ann. Local Genetic (5+5)

Wrapper

Discr_calc

H

e
u

r
i
s
t
i
c

L

a
y

e
r

M
u

l
t
i
c
o

r
e

D

i
s
p

a
t
c
h

Fig. 1: Tool overview

order to discuss the dependency of the discrepancy and efficiency of the heuristics
with regards to the values chosen for the prime base. The average results remains
roughly identical when taking changing these primes and taking them in the
range [2, 100]. For such a reason we decided to pursue the full computations with
a fixed basis.

1.1 Algorithmic insights

To perform an experiment we made up a loop above the main algorithm which
calls the chosen heuristic multiple times in order to smooth up the results and
obtain more exploitable datas. Then an arithmetic mean of the result is performed
on the values. In addition extremal values are also given in order to construct
error bands graphs.

Graph are presented not with the usual box plots to show the error bounds,
but in a more graphical way with error bands. The graph of the mean result is
included inside a band of the same color which represents the incertitude with
regards to the values obtained.

A flowchart of the conduct of one experiment is described in the flowchart 3.
The number of iteration of the heuristic is I and the number of full restart is N.
The function Heuristic() corresponds to a single step of the chosen heuristic.

We now present an in-depth view of the implemented heuristics.

search

genetic_search local_search random_search

random_local_search sa_local_search

halton pointset

permutation dem_discr

points discrepancy

Fig. 2: Class dependencies

Start

restart < N
 True iterations < I Heuristic() True

mean(discr)

 False

Save current_discr

Update min_discr,
max_discr

Fig. 3: Flowchart of a single experiment

2 Heuristics developed

2.1 Fully random search (Test case)

The first heuristic implemented is the random search. We generate random
permutations, compute the corresponding sets of Halton points and select the best
set with regards to its discrepancy. The process is wrapped up in the flowchart 4.
In order to generate at each step random permutations, we transform them
directly from the previous ones. More precisely the permutation is a singleton
object which have a method random, built on the Knuth Fisher Yates shuffle.
This algorithm allows us to generate an uniformly chosen permutation at each
step. We recall this fact and detail the algorithm in the following section.

Start

iteration
> 1000

Perm.random()

 False

End
 True

calc_disp < min

Perm.transpose()

 False

update min

 True

Fig. 4: Flowchart of the random search

The Knuth-Fisher-Yates shuffle The Fisher–Yates shuffle is an algorithm
for generating a random permutation of a finite sets. The Fisher–Yates shuffle
is unbiased, so that every permutation is equally likely. We present here the
Durstenfeld variant of the algorithm, presented by Knuth in The Art of Computer

programming vol. 2 [Knu97]. The algorithm’s time complexity is here O(n),
compared to O(n2) of the naive implementation.

Algorithm 1: KFY algorithm
Data: A table T[1..n]
Result: Same table T, shuffled
for i← 1 to n− 1 do

j ← Rand([1, n− i]);
Swap(T [i], T [i+ j]);

end

Lemma 1. The resulting permutation of KFY is unbiased.

Proof. Let consider the set [1, . . . n] as the vertices of a random graph constructed
as the trace of the execution of the algorithm: an edge (i, j) exists in the graph
if and only if the swap of T [i] and T [j] had been executed. This graph encodes
the permutation represented by T . To be able to encode any permutation the
considered graph must be connected — in order to allow any pairs of points to
be swapped. Since by construction every points is reached by an edge, and that
there exists exactly n− 1 edges, we can conclude directly that any permutation
can be reached by the algorithm. Since the probability of getting a fixed graph
of n− 1 edges with every edges of degree at least one is n!−1, the algorithm is
thus unbiased.

Results and stability We first want to analyze the dependence of the results
on the number of iterations of the heuristic, in order to discuss its stability. The
results are compiled in the figures 5 and 6, restricted to a number of points
between 80 and 180. We emphasize on the fact lot of datas appears on graphs,
and error bands representation make them a bit messy. These graphs were made
for extensive internal experiments and parameters researches. The final wrap
up graphs are much more lighter and only present the best results obtained. As
expected from a fully random search, error bands are very large for low number
of iterations (15% of the value for 400 iterations) and tend to shrink with a
bigger number of iterations (around 5% for 1500 iterations). This shrinkage is a
direct consequence of well known concentrations bounds (Chernoff and Asuma-
Hoeffding). The average results are quite stable, they decrease progressively with
the growing number of iterations, but seem to get to a limit after 1000 iterations.
This value acts as a threshold for the interesting number of iterations. As such
interesting results can be conducted with only 1000 iterations, without altering
too much the quality of the set with regards to its discrepancy and this heuristic.

2.2 Local search with simulated annealing

The second heuristic implemented is a randomized local search with simulated
annealing. This heuristic is inspired by the physical process of annealing in
metallurgy. Simulated annealing interprets the physical slow cooling as a slow

Fig. 5: Dependence on iterations, dimension 2

Fig. 6: Dependence on iterations, dimension 3

decrease in the probability of accepting worse solutions as it explores the solution
space. More precisely a state is a d-tuple of permutations, one for each dimension,
and the neighborhood is the set of d-tuple of permutations which can be obtained
by application of exactly one transposition of one of the permutations of the
current state. The selection phase is dependant on the current temperature: after
selecting randomly a state in the neighborhood, either the discrepancy of the
corresponding Halton set is decreased and the evolution is kept, either it does
not but is still kept with a probability e

δ
T where δ is the difference between the

old and new discrepancy, and T the current temperature. If the discrepancy has
decreased, the temperature T is multiplied by a factor λ (fixed to 0.992 in all
our simulations), hence is decreased. The whole algorithm is described in the
flowchart 7.

Start

Create Points

Permutation class

Iteration < 1000

 True

End

 False

Update_points

Perm.transpose()

 True

Calc_discr()

 False

discr > min_discr &&
Bernouilli(exp(delta/T))

 False

Update discr

 True

Delta *= lambda

Fig. 7: Flowchart of the local search with simulated annealing heuristic

Dependence on the temperature First experiments were made to select the
best initial temperature. Results are compiled in graphs 8, 9, and 10. Graphs 8
and 9 represent the results obtained respectively in dimension 2 and 3 between
10 and 500 points. The curve obtained is characteristic of the average evolution
of the discrepancy optimization algorithms for Halton points sets: a very fast
decrease for low number of points — roughly up to 80 points — and then a
very slow one after [DDR13]. The most interesting part of these results are
concentrated between 80 and 160 points were the different curves splits. The
graph 10 is a zoom of 9 in this window. We remark on that graph that the lower
the temperature is, the best the results are, with a threshold at 10−3.

Fig. 8: Dependence on initial temperature: D=2

Stability with regards to the number of iterations As for the fully random
search heuristic we investigated the stability of the algorithm with regards to the
number of iterations. We present the result in dimension 3 in the graph 11. Once
again we restricted the window between 80 and 180 points were curves are split.
An interesting phenomena can be observed: the error rates are somehow invariant
w.r.t. the number of iterations and once again the 1000 iterations threshold seems
to appear — point 145 is a light split between iteration 1600 and the others, but
excepted for that point, getting more than 1000 iterations tends be be a waste of

Fig. 9: Dependence on initial temperature: D=3

Fig. 10: Dependence on initial temperature (zoom): D=3

time. The error rate is for 80 points the biggest and is about 15% of the value,
which is similar to the error rates for fully random search with 400 iterations.

Fig. 11: Dependence on iterations number for simulated annealing : D=3

2.3 Genetic (µ+ λ) search

The third heuristic implemented is the (µ+ λ) genetic search. This heuristic is
inspired from the evolution of species: a family of µ genes is known (they are
generated randomly at the beginning), from which λ new genes are derived. A
gene is the set of parameters we are optimizing, i.e. the permutations. Each one
is derived either from one gene applying a mutation (here a transposition of one
of the permutations), or from two genes applying a crossover: a blending of both
genes (the algorithm is described in details further). The probability of making
a crossover rather than a mutation is c, the third parameter of the algorithm,
among µ and λ. After that, only the µ best genes are kept, according to their
fitness, and the evolutionary process can start again.

Because making variations over µ or λ does not change fundamentally the
algorithm, we have chosen to fix µ = λ = 5 once and for all, which seemed to be
a good trade-off between the running time of each iteration and the size of the
family.

Crossover algorithm We designed an ad-hoc crossover for permutations. The
idea is simple: given two permutations A and B of {1..n}, it constructs a new
permutation C value after value, in a random order (we use our class permutation
for this). For each index i, we take either Ai or Bi. If exactly one of those
values is available (understand it was not already chosen) we choose it. If both
are available, we choose randomly and we remember the second. If both are
unavailable, we choose a remembered value. The flowchart of this algorithm is
described in figure 12.

The benefits of this method are that it keeps common values of A and B, the
values Ci are often among {Ai, Bi} (hence C is close to A and B), and it does
not favor either the beginning or the ending of permutations.

Algorithm 2: Permutations crossover
Data: Two permutations A[1..n], B[1..n]
Result: A permutation C[1..n]
pi← a random permutation of {1, . . . , n};
available← {};
got← {};
for i← 1 to n do

j ← pii;
a← Aj ;
b← Bj ;
if a ∈ got ∧ b ∈ got then

v ← a random value in available;
end
else if a ∈ got then

v ← b;
end
else if b ∈ got then

v ← a;
end
else

Swap(A,B) with probability 1/2;
v ← Aj ;
available← available ∪ {Bj};

end
Cj ← v;
got← got ∪ {v};
available← available \ {v};

end

Dependence on the parameter c First experiments were made to select the
value for the crossover parameter c. Results are compiled in graphs 13, 14,15
and 16. Graph 13, represents the results obtained in dimension 2 between 10 and
500 points. The curve obtained is, with no surprise again, the characteristic curve

A(0,...,n-1)
B(0,...,n-1)

availables ← ø
i = n

pi ← KFY shuffle (1..n)

i > 0

A[pi[i]] and B[pi[i]] already chosen

 True

C(pi(i)) ← Random in availables

 True

A(pi(i)) already chosen

 False

availables ← availables \ {C(pi(i))}

C(i) ← B(pi(i))

 True

B(pi(i)) already chosen then

 False

C(i) ← A(pi(i)

 True

swap (A ,B) w.p. 1/2

 False

C(i) ← A(pi(i))

available ← available U {B(pi(i))}

i--

Fig. 12: Flowchart of the crossover algorithm.

of the average evolution of the discrepancy we already saw with the previous
experiments. The most interesting part of these results are concentrated — once
again — between 80 and 160 points were the different curves splits. The graph 14
is a zoom of 13 in this window, and graphs 15 and 16 are focused directly into
it too. We remark that in dimension 2, the results are better for c close to 0.5
whereas for dimension 3 and 4 the best results are obtained for c closer to 0.1,
that is a low probability of making a crossover.

Fig. 13: Dependence on parameter c: D=2

Stability Once again we investigated the stability of the algorithm with regards
to the number of iterations. Once again we restricted the window between 80
and 180 points were curves are split. The results are compiled in graph 17. An
interesting phenomena can be observed: the error rates are getting really big for
1400 iterations at very low points (up to 120), even if the average results are
stables after the threshold 1000 iterations, like we get before.

3 Results and conclusions

Eventually we made extensive experiments to compare the three previously
presented heuristics. The parameters chosen for the heuristics have been guessed
using the experiments conducted in the previous sections. Results are compiled

Fig. 14: Dependence on parameter c (zoom): D=2

Fig. 15: Dependence on parameter c: D=3

Fig. 16: Dependence on parameter c: D=4

Fig. 17: Stability w.r.t. number of iterations: D=2

in the last figures 18, 19, 20, and 21. The recognizable curve of decrease of the
discrepancy is still clearly recognizable in the graph 18, made for points ranged
between 10 and 600. We then present the result in the — now classic — window
80 points - 180 points. For all dimensions, the superiority of non-trivial algorithms
— simulated annealing and genetic search — is clear over fully random search.
Both curves for these heuristics are way below the error band of random search.
As a result worse average results of non trivial heuristics are better than best
average results when sampling points at random. In dimension 2 19, the best
results are given by the simulated annealing, whereas in dimension 3 and 4 20, 21,
best results are given by genetic search. It is also noticeable that in that range of
points the error rates are roughly the same for all heuristics: for 1000 iteration,
the stability of the results is globally the same for each heuristic.

Fig. 18: Comparison of all heuristics: D=2

Acknowledgments

We would like to thank Magnus Wahlstrom from the Max Planck Institute for
Informatics for providing an implementation of the DEM algorithm. We would
also like to thank Christoph Dürr and Carola Doerr for several very helpful talks
on the topic of this work. Both Thomas Espitau and Olivier Marty are supported
by the French Ministry for Research and Higher Education, trough the École
Normale Supérieure.

Fig. 19: Comparison of all heuristics (zoom): D=2

Fig. 20: Comparison of all heuristics: D=3

Fig. 21: Comparison of all heuristics: D=4

References

[DDR13] Carola Doerr and François-Michel De Rainville. Constructing low star
discrepancy point sets with genetic algorithms. In Proceedings of the
15th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’13, pages 789–796, New York, NY, USA, 2013. ACM.

[DEM96] David P. Dobkin, David Eppstein, and Don P. Mitchell. Computing
the discrepancy with applications to supersampling patterns. ACM
Trans. Graph., 15(4):354–376, October 1996.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997.

[Wah] Magnus Wahlström. discrcalc.tar.gz.

	'111 Discrepancies for generalized Halton points Comparison of three heuristics for generating points set

