Simplex.cc 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. // Two-phase simplex algorithm for solving linear programs of the form
  2. // maximize c^T x
  3. // subject to Ax <= b
  4. // x >= 0
  5. // INPUT: A -- an m x n matrix
  6. // b -- an m-dimensional vector
  7. // c -- an n-dimensional vector
  8. // x -- a vector where the optimal solution will be stored
  9. // OUTPUT: value of the optimal solution (infinity if unbounded
  10. // above, nan if infeasible)
  11. // USAGE: create an LPSolver object with A, b, and c as
  12. // arguments. Then, call Solve(x).
  13. typedef long double DOUBLE;
  14. typedef vector<DOUBLE> VD;
  15. typedef vector<VD> VVD;
  16. const DOUBLE EPS = 1e-9;
  17. struct LPSolver {
  18. int m, n;
  19. VI B, N;
  20. VVD D;
  21. LPSolver(const VVD &A, const VD &b, const VD &c) :
  22. m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2)) {
  23. for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j];
  24. for (int i = 0; i < m; i++) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }
  25. for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
  26. N[n] = -1; D[m+1][n] = 1;
  27. }
  28. void Pivot(int r, int s) {
  29. for (int i = 0; i < m+2; i++) if (i != r)
  30. for (int j = 0; j < n+2; j++) if (j != s)
  31. D[i][j] -= D[r][j] * D[i][s] / D[r][s];
  32. for (int j = 0; j < n+2; j++) if (j != s) D[r][j] /= D[r][s];
  33. for (int i = 0; i < m+2; i++) if (i != r) D[i][s] /= -D[r][s];
  34. D[r][s] = 1.0 / D[r][s];
  35. swap(B[r], N[s]);
  36. }
  37. bool Simplex(int phase) {
  38. int x = phase == 1 ? m+1 : m;
  39. while (true) {
  40. int s = -1;
  41. for (int j = 0; j <= n; j++) {
  42. if (phase == 2 && N[j] == -1) continue;
  43. if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s] && N[j] < N[s]) s = j;
  44. }
  45. if (D[x][s] >= -EPS) return true;
  46. int r = -1;
  47. for (int i = 0; i < m; i++) {
  48. if (D[i][s] <= 0) continue;
  49. if (r == -1 || D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] ||
  50. D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s] && B[i] < B[r]) r = i;
  51. }
  52. if (r == -1) return false;
  53. Pivot(r, s);
  54. }
  55. }
  56. DOUBLE Solve(VD &x) {
  57. int r = 0;
  58. for (int i = 1; i < m; i++) if (D[i][n+1] < D[r][n+1]) r = i;
  59. if (D[r][n+1] <= -EPS) {
  60. Pivot(r, n);
  61. if (!Simplex(1) || D[m+1][n+1] < -EPS) return -numeric_limits<DOUBLE>::infinity();
  62. for (int i = 0; i < m; i++) if (B[i] == -1) {
  63. int s = -1;
  64. for (int j = 0; j <= n; j++)
  65. if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j] < N[s]) s = j;
  66. Pivot(i, s);
  67. }
  68. }
  69. if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
  70. x = VD(n);
  71. for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];
  72. return D[m][n+1];
  73. }
  74. };