Simplex.cc 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. // Two-phase simplex algorithm for solving linear programs of the form
  2. // maximize c^T x
  3. // subject to Ax <= b
  4. // x >= 0
  5. // INPUT: A -- an m x n matrix
  6. // b -- an m-dimensional vector
  7. // c -- an n-dimensional vector
  8. // x -- a vector where the optimal solution will be stored
  9. // OUTPUT: value of the optimal solution (infinity if unbounded
  10. // above, nan if infeasible)
  11. // USAGE: create an LPSolver object with A, b, and c as
  12. // arguments. Then, call Solve(x).
  13. typedef long double DOUBLE;
  14. typedef vector<DOUBLE> VD;
  15. typedef vector<VD> VVD;
  16. typedef vector<int> VI;
  17. const DOUBLE EPS = 1e-9;
  18. struct LPSolver {
  19. int m, n;
  20. VI B, N;
  21. VVD D;
  22. LPSolver(const VVD &A, const VD &b, const VD &c) :
  23. m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2)) {
  24. for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j];
  25. for (int i = 0; i < m; i++) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }
  26. for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
  27. N[n] = -1; D[m+1][n] = 1;
  28. }
  29. void Pivot(int r, int s) {
  30. for (int i = 0; i < m+2; i++) if (i != r)
  31. for (int j = 0; j < n+2; j++) if (j != s)
  32. D[i][j] -= D[r][j] * D[i][s] / D[r][s];
  33. for (int j = 0; j < n+2; j++) if (j != s) D[r][j] /= D[r][s];
  34. for (int i = 0; i < m+2; i++) if (i != r) D[i][s] /= -D[r][s];
  35. D[r][s] = 1.0 / D[r][s];
  36. swap(B[r], N[s]);
  37. }
  38. bool Simplex(int phase) {
  39. int x = phase == 1 ? m+1 : m;
  40. while (true) {
  41. int s = -1;
  42. for (int j = 0; j <= n; j++) {
  43. if (phase == 2 && N[j] == -1) continue;
  44. if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s] && N[j] < N[s]) s = j;
  45. }
  46. if (D[x][s] >= -EPS) return true;
  47. int r = -1;
  48. for (int i = 0; i < m; i++) {
  49. if (D[i][s] <= 0) continue;
  50. if (r == -1 || D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] ||
  51. D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s] && B[i] < B[r]) r = i;
  52. }
  53. if (r == -1) return false;
  54. Pivot(r, s);
  55. }
  56. }
  57. DOUBLE Solve(VD &x) {
  58. int r = 0;
  59. for (int i = 1; i < m; i++) if (D[i][n+1] < D[r][n+1]) r = i;
  60. if (D[r][n+1] <= -EPS) {
  61. Pivot(r, n);
  62. if (!Simplex(1) || D[m+1][n+1] < -EPS) return -numeric_limits<DOUBLE>::infinity();
  63. for (int i = 0; i < m; i++) if (B[i] == -1) {
  64. int s = -1;
  65. for (int j = 0; j <= n; j++)
  66. if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j] < N[s]) s = j;
  67. Pivot(i, s);
  68. }
  69. }
  70. if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
  71. x = VD(n);
  72. for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];
  73. return D[m][n+1];
  74. }
  75. };